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Abstract

This technote summarizes the existing work in searching for νe low-energy excess

(eLEE) in MicroBooNE Booster Neutrino Beam (BNB) data stream based on the Wire-

Cell event reconstruction paradigm. The charged-current νµ and νe events are selected

from the 5.3e19 POT data from the BNB beam and 2.06e20 POT data from Neutrinos

at the Main Injector (NuMI) beam. The charged-current νe selection results from the

BNB data that are sensitive to the eLEE search are not included. Various comparisons

between data and Monte Carlo predictions are performed to validate the overall model

and demonstrate the power of the analysis techniques.
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1 INTRODUCTION

This technote summarizes some foundational work for a low-energy νe excess (eLEE) in

MicroBooNE [1] using the Wire-Cell event reconstruction paradigm. The starting point of

this analysis is the generic neutrino detection [2, 3, 4], in which the cosmic-ray backgrounds

are largely rejected resulting an overall contamination level below 15%. After the generic

neutrino selection, the efficiencies for selecting charged-current νµ (νµCC) and νe (νe CC)

events are about 80% and 90%, respectively. The signal-to-background ratios for νµCC and

νe CC are about 2:1 and 1:190, respectively, and are further improved with the techniques

described in this technote. The event selections in this analysis are designed to be as general

as possible (i.e. inclusive νe CC and νµCC event selections), so that more freedom is available

at later stages of the analysis if an excess is observed.
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Figure 1: Evolution of theνe CC event selection from human learning/engineering to machine learning.
The combination of generic features selected by human engineering and high statistics simulation
events evaluated by the machine learning yields a robust and high-performance νe CC event selection.

As shown in Fig. 1, the development of the νe CC event selection (or tagger) naturally

follows a transition from human learning/engineering to machine learning. During the

human learning stage, hand scan techniques are used to identify generic features that can be

used to perform event selection. The features are intended to be robust against the detailed

simulation/data differences. Although the hand scan is efficient in selecting generic features,

it is clearly limited by the capacity of a human being. For example, a person can generally

study only about 20 events in details per day. While this capability is enough for a task with a

reasonable initial signal-to-background ratio (i.e. νµCC at 2:1), it is not sufficient for a task

with a poor initial signal-to-background ratio (i.e. νe CC at 1:190). For the latter, machine

Page 3 of 55



MicroBooNE Public Wire-Cell º CC Selection

learning techniques are necessary, since hundreds of thousands of simulated events can be

studied by a computer at once. In particular, we use a boosted decision tree (BDT) trained on

the generic features that were engineered by the hand scan to maximize the ef�ciency and

purity of �nal º eCC and º ¹ CC event selections. A purity of 83% (93%) and an ef�ciency of

42% (64%) are achieved for º eCC (º ¹ CC) event selection. Together with the evolution of º eCC

event selection, the energy reconstruction has also evolved from the visible energy to the EM

shower energy, and then to the reconstructed neutrino energy, which has the best resolution

and capability to distinguish signal and background events.

Figure 2: Summary of test statistics used in this analysis.

The search for an LEE signal is equivalent to testing the null hypothesis de�ned as the

Standard Model (SM) prediction without an LEE signal. The SM prediction is formed based

on state-of-art understanding of the Booster Neutrino Beam �ux [ 5], the neutrino-argon

interaction cross section [ 6], detector simulation [ 7, 8, 9], and signal processing [ 7, 10, 11, 12].

The alternative hypothesis is formed based on a model of a potential anomalous enhance-

ment in the rate of intrinsic º eCC events at true neutrino energies less than 600 MeV with a

�xed spectral shape. The model is obtained by unfolding the observed excess of electron-like

events in MiniBooNE [ 13] to true neutrino energy under a charged-current quasi-elastic

(CCQE) hypothesis and applying that directly to the rate of intrinsic º eCC events expected in

MicroBooNE [ 14]. In the alternative hypothesis, we allow the normalization of this low energy

excess model to �oat and de�ne a signal strength parameter x, such that x Æ0 corresponds

to no anomalous enhancement in the expected rate of intrinsic º eCC events (the SM case)
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and x Æ1 corresponds to an anomalous enhancement in the expected rate of intrinsic º eCC

events of equal magnitude to that obtained from the unfolded MiniBooNE measurement (or

LEExÆ1).

We �t this model to our data by minimizing a Â2 test statistic that incorporates our

knowledge of experimental uncertainties and their correlations into a covariance matrix

and obtain a best �t value of x Æxmin . We compute the ¢ Â2
nested for our data for each value

of the signal strength x, relative to this best �t point, and obtain frequentist con�dence

intervals for the signal strength x following the Feldman-Cousins uni�ed approach [ 15].

This test is essentially a nested likelihood ratio (LR) hypothesis test. In addition to the

primary nested LR test statistics ( ¢ Â2
nested), several other test statistics are used to provide

supplemental information. They are i) goodness-of-�t (GoF) based on a Pearson Â2; and ii) a

simple-vs-simple likelihood ratio test ( ¢ Â2
simple ÆÂ2

SM ¡ Â2
LEExÆ1), which provides additional

information regarding the tests against the null hypothesis. Figure 2 summarizes the various

test statistics used in this analysis.

MicroBooNE Preliminary

Figure 3: Illustration of the 7-channel �t in searching for eLEE. All plots can be found in Sec. 6. Data
points for º e CC selection are not available.

To maximize the physics sensitivity of this search, a 7-channel �t strategy is adopted as

shown in Fig. 3. The seven channels are i) fully contained (FC) º eCC, ii) partially contained

(PC) º eCC, iii) fully contained º ¹ CC, iv) partially contained º ¹ CC, v) fully contained CC ¼0,
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vi) partially contained CC ¼0, and vii) NC ¼0. The primary channel that is sensitive to the LEE

search is the FC º eCC. Three channels — PC º eCC, FCº ¹ CC, and PCº ¹ CC — are used to

provide constraints to the signal prediction (e.g. neutrino �ux, cross section, and detector

systematics). The other three channels — FC CC ¼0, PC CC¼0, and NC¼0 — are used to

improve the background prediction, since ¼0's are one of the major backgrounds of º eCC

events. To ensure these seven channels are statistically independent, the event selections are

designed to be exclusive from each other. For example, the CC ¼0 event selection excludes the

º eCC candidates. Similarly, the º ¹ CC event selection excludes º eCC and CC¼0 candidates. In

the 7-channel selection plots shown in this note, the categories “ º ¹ CC” and “NC” exclude

º eCC and ¼0 events.

In this analysis, we consider the various sources of systematic uncertainties from i)

neutrino �ux of the Booster Neutrino Beam, ii) the neutrino-argon cross section based

on the GENIE event generator, iii) detector performance, iv) �nite statistics from Monte Carlo

simulation, and v) additional uncertainties. Different sources of systematic uncertainties

have different impacts on the predicted event distributions. The systematic uncertainties

associated with the neutrino �ux would change the distribution of events by providing

different weights for events with different true neutrino energy and �avor. The systematic

uncertainties of cross section and detector performance can impact the ef�ciency (for both

signal and background) as well as the reconstruction of kinematic variables. The uncertainty

because of the limited statistics of Monte Carlo simulation is particularly important for rare

event searches (e.g.º eCC). Additional uncertainties are necessary for estimating systematics

for the background contributions from neutrino interactions originating outside the cryostat

(subsequently referred to as DIRT events).

2 WIRE-CELL PATTERN RECOGNITION

This section summarizes the development of the pattern recognition techniques in Wire-Cell,

which are the foundation of the high-performance º eCC and º ¹ CC event selections. Some

of the basic tools—the track trajectory and dQ/ dx �tting used to reject stopped muons, for

example—are improved versions of techniques developed for the generic neutrino detec-

tion [ 16]. This �tting algorithm was expanded to �t multiple tracks with vertices connecting

them rather than �tting a single track. Figure 4 shows the overall �ow of Wire-Cell pattern

recognition. We summarize the pattern recognition strategy brie�y here. First, vertices are

de�ned by searching for kinks and splits in the reconstructed 3D images. With vertices deter-

mined, segments between vertices are de�ned. A 3D vertex �tting technique is then used
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